• EN
  • FR
Site carrière CEA : toutes nos offres d'emploi
CEA

Suivez nous

  •  

  • Accueil
  • Déposer une candidature spontanée
  • Ma recherche, mon alerte
  • CDI/CDD pour alternants/stag. CEA
  • Consulter nos sujets de Thèses
  • Un souci ? Contactez-nous
 

Connexion Espace candidat

J'ai déjà un espace candidat

Connexion à l'espace candidat




Mot de passe perdu

S'inscrire Je me crée un espace candidat

Vous n'avez pas encore votre propre espace candidat. Créez-le en cliquant ici.
Un souci ? Contactez-nous à
admin-poem@cea.fr

 

Vous êtes ici :  Accueil  ›  Liste des offres  ›  Détail de l'offre

Ma sélection : 0 offre(s)
Site carrière CEA : toutes nos offres d'emploi
CEA

Suivez nous

  •  

Menu Site carrière CEA

  • Accueil
  • Déposer une candidature spontanée
  • Ma recherche, mon alerte
  • CDI/CDD pour alternants/stag. CEA
  • Consulter nos sujets de Thèses
  • Un souci ? Contactez-nous
Pause
Lecture
Moteur de recherche d'offres d'emploi CEA
Voir toutes les offres
Flux RSS et autres flux
Information

Internship in AI optimisation for Master's degree or engineering degree M/F

  • Envoyer cette offre à un ami
  • Imprimer cette offre (nouvelle fenêtre)
  •  


Vacancy details

General information

CEA (logo)

Organisation

The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.

Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.

The CEA is established in ten centers spread throughout France
  

Reference

2025-37100  

Position description

Category

Engineering science

Contract

Internship

Job title

Internship in AI optimisation for Master's degree or engineering degree M/F

Subject

Fully Quantized Vision Transformers: Integer-Only Architecture for Object Detection

Contract duration (months)

6

Job description

The French Alternative Energies and Atomic Energy Commission (CEA) is a leading research and innovation organization active in three major fields: energy, information and health technologies, and defense. Within the CEA, the Laboratory for Systems and Technology Integration (LIST), located in Saclay (Ile-de-France), drives technology transfer and innovation in embedded systems. The Embedded Artificial Intelligence Laboratory (LIAE) specializes in designing optimized AI solutions for embedded environments, with a focus on efficiency in surface, power consumption, and computing performance.


Vision Transformers (ViTs) have recently demonstrated superior performance over Convolutional Neural Networks (CNNs) in a wide range of computer vision tasks. Their strong representational capacity, however, comes at the price of significantly higher computational complexity and memory requirements. This poses a major challenge for deploying ViT-based models on resource-constrained devices such as mobile or embedded systems. To address this issue, our lab is actively exploring quantization techniques, which allow efficient inference by constraining all operations, including matrix multiplications and activations, to integer arithmetic. This line of research has already led to promising results in semantic segmentation with the development of the I-Segmenter [1], a fully quantized ViT framework that achieves competitive accuracy while drastically reducing the inference cost.


Internship Objective

The objective of this internship is to extend our ongoing work on ViTs by incorporating object detection. The project will first focus on quantizing a detection head, such as RT-DETR [2,3], in order to ensure its compatibility with an integer-only ViT encoder. The next step will be to integrate the quantized segmentation and detection heads into a unified integer-only multi-task ViT capable of handling both tasks simultaneously. Finally, the proposed system will be evaluated on PyTorch and TVM backends, with performance measured in terms of accuracy using mean Average Precision (mAP), as well as efficiency using throughput (FPS), parameter count, and computational cost (MACs).


Expected Outcomes


* A proof-of-concept implementation of a fully quantized multi-task ViT for segmentation and detection.

* Comparative benchmarks against mixed-precision or floating-point baselines.

* Results with potential for inclusion in a scientific publication.

References:

[1] J. Sassoon, M. Szczepanski, and M. Poreba. 2025. I-Segmenter: Integer-Only Vision Transformer for Efficient Semantic Segmentation (under review)

[2] Y. Zhao, W. Lv, S. Xu, J. Wei, G. Wang, Q. Dang, Y. Liu, and J. Chen. DETRs Beat YOLOs on Real-time Object Detection.

[3] W. Lv, Y. Zhao, Q. Chang, K. Huang, G. Wang, and Y. Liu. RT-DETRv2

#AI #IA  #edgeAI #edgeIA #ViT #CNN #Vision #VisionTransformer #detection #objectdetection #RT-DETR #quantization #integer #optimisation 

Applicant Profile

Requested profile: Master degree (BAC+5) in Computer Science, Applied Mathematics, or related field.

Qualification: Strong knowledge of deep learning (CNNs, VIT) and PyTorch. Good programming skills in Python (C++ is a plus). Interest in efficient AI, embedded systems, or model quantization. 

To apply: resume + cover letter + marks and ranking for the three previous academic years

Position location

Site

Saclay

Job location

France, Ile-de-France, Essonne (91)

Location

2 Bd Thomas Gobert, 91120 Palaiseau

Candidate criteria

Languages

English (Intermediate)

Prepared diploma

Bac+5 - Master 2

Recommended training

Computer Science, Applied Mathematics, or related field

PhD opportunity

Oui

Requester

Position start date

31/01/2026


Autres offres

Ces offres pourraient vous intéresser

STAGIAIRE H/F

Ajouter cette offre à ma sélection : STAGIAIRE H/F  (2025-36793)
  • Réf. : 2025-36793
  • Stage
  • Essonne (91)
  • Gif-sur-Yevette

Stage - Simulation numérique - écoulements diphasiques avec transfert de masse - validation H/F

Ajouter cette offre à ma sélection : Stage - Simulation numérique - écoulements diphasiques avec transfert de masse - validation H/F (2025-37014)
  • Réf. : 2025-37014
  • Stage
  • Saint-Paul-Lez-Durance

Alternance - Bac+5 - Ingénieur en mécatronique - H/F

Ajouter cette offre à ma sélection : Alternance - Bac+5 - Ingénieur en mécatronique - H/F (2025-34902-S1655)
  • Réf. : 2025-34902-S1655
  • Alternance
  • Mentions légales
  • Cookies
  • Paramétrer vos cookies
  • Accessibilité : partiellement conforme
  • Plan du site
Aller en haut