• EN
  • FR
Site carrière CEA : toutes nos offres d'emploi
CEA

Suivez nous

  •  

  • Accueil
  • Déposer une candidature spontanée
  • Ma recherche, mon alerte
  • CDI/CDD pour alternants/stag. CEA
  • Consulter nos sujets de Thèses
  • Un souci ? Contactez-nous
 

Connexion Espace candidat

J'ai déjà un espace candidat

Connexion à l'espace candidat




Mot de passe perdu

S'inscrire Je me crée un espace candidat

Vous n'avez pas encore votre propre espace candidat. Créez-le en cliquant ici.
Un souci ? Contactez-nous à
admin-poem@cea.fr

 

Vous êtes ici :  Accueil  ›  Liste des offres  ›  Détail de l'offre

Ma sélection : 0 offre(s)
Site carrière CEA : toutes nos offres d'emploi
CEA

Suivez nous

  •  

Menu Site carrière CEA

  • Accueil
  • Déposer une candidature spontanée
  • Ma recherche, mon alerte
  • CDI/CDD pour alternants/stag. CEA
  • Consulter nos sujets de Thèses
  • Un souci ? Contactez-nous
Pause
Lecture
Moteur de recherche d'offres d'emploi CEA
Voir toutes les offres
Flux RSS et autres flux
Information

Learning to focus: Physics-Informed Deep Learning for Super-Resolved Ultrasonic Phased-Array Imaging H/F

  • Envoyer cette offre à un ami
  • Imprimer cette offre (nouvelle fenêtre)
  •  


Vacancy details

General information

CEA (logo)

Organisation

The French Alternative Energies and Atomic Energy Commission (CEA) is a key player in research, development and innovation in four main areas :
• defence and security,
• nuclear energy (fission and fusion),
• technological research for industry,
• fundamental research in the physical sciences and life sciences.

Drawing on its widely acknowledged expertise, and thanks to its 16000 technicians, engineers, researchers and staff, the CEA actively participates in collaborative projects with a large number of academic and industrial partners.

The CEA is established in ten centers spread throughout France
  

Reference

2025-38197  

Description de l'unité

The Intelligent, Distributed and Embedded Instrumentation Laboratory (LIIDE) is dedicated to developing a hybrid hardware–software platform to design the instrumentation functionalities of the future.
The laboratory works on two complementary fronts:
1. Hardware development, focused on versatile and modular electronic boards together with the necessary software for their operation, in order to cover a wide range of sensor technologies; and
2. Innovative artificial intelligence functionalities for distributed measurement and frugal, decentralized learning.

The Acoustics for Inspection and Characterization Laboratory (LA2C) develops ultrasonic inspection and characterization methods, as well as associated robotics and sensors. It has significant expertise in hardware and software development, as well as current material and industrial problems. Its current principal focus is on ultrasonic imaging for complex industrial scenarios.

These laboratories are embedded within a rich ecosystem centered on digital instrumentation for control, monitoring, and diagnostics. The department it belongs to leverages a broad spectrum of sensors (optical fibers, piezoelectric sensors, eddy-current probes, X-ray systems) as well as cutting-edge experimental platforms. Its main application areas are non-destructive evaluation (NDE) and structural health monitoring (SHM).

Position description

Category

Mathematics, information, scientific, software

Contract

Internship

Job title

Learning to focus: Physics-Informed Deep Learning for Super-Resolved Ultrasonic Phased-Array Imaging H/F

Subject

The internship aims to design a physics-informed deep learning framework for super-resolved ultrasonic imaging, extending the Total Focusing Method (TFM) beyond its physical and algorithmic limitations. By learning adaptive focusing laws, modeling uncertainties, and incorporating modern architectures like transformers, the project will create interpretable and generalizable imaging models that outperform classical methods in both accuracy and speed.

This research will contribute to next-generation ultrasonic inspection systems capable of detecting minute defects in complex materials—enhancing reliability in high-stakes industrial applications.

Contract duration (months)

6

Job description

Ultrasonic phased-array imaging is a core technology in non-destructive testing (NDT) for detecting defects such as cracks or voids in industrial components. By electronically steering ultrasonic beams, phased arrays generate detailed 3D images of internal structures. The Total Focusing Method (TFM) is the standard reconstruction algorithm, achieving diffraction-limited resolution by coherently summing signals from all emitter–receiver pairs.

However, conventional TFM suffers from key limitations: its resolution is constrained by diffraction and array pitch, grating lobes degrade image quality, and it assumes uniform sound velocity. It also struggles to resolve sub-wavelength defects, limiting its effectiveness in complex or heterogeneous materials.

Recent deep learning methods have improved ultrasonic imaging through denoising and super-resolution, but most operate as black boxes without physical interpretability. They often fail to generalize across array geometries or material conditions.

This internship proposes a physics-informed deep learning framework that integrates physical modeling of ultrasonic propagation into neural architectures. Instead of static delay-and-sum focusing, the approach learns adaptive, reweighted focusing kernels that enhance resolution while maintaining interpretability.

The research is structured around six axes:

  1. Reweighted TFM: learn per-pixel focusing weights through supervised or self-supervised training for adaptive, interpretable imaging.
  2. Grating-lobe analysis: study array pitch effects and compare learned PSFs with theoretical models.
  3. Tiny defect imaging: test the method on sub-wavelength defects using synthetic and experimental data.
  4. Coded excitation: train models for artifact-free imaging under simultaneous transmit–receive schemes for faster acquisition.
  5. Sound speed estimation: incorporate differentiable beamforming to jointly estimate material properties and focus adaptively.
  6. Transformer-based characterization: use multi-angle scattering data and attention mechanisms for defect classification and interpretation.

Expected outcomes include a new interpretable deep model for ultrasonic imaging, quantitative grating-lobe suppression analysis, and demonstration of sub-wavelength defect detection. 

This project bridges data-driven learning and physical modeling, leading to more robust, adaptive, and explainable ultrasonic imaging systems. The resulting framework could significantly enhance industrial inspection and structural health monitoring by achieving super-resolution, real-time imaging of complex materials.

Detailed research proposal here.

Applicant Profile

The ideal candidate will have a Master’s degree in Electrical Engineering, Applied Physics, Computer Science, or a related discipline. A strong background in signal and image processing, deep learning (PyTorch, TensorFlow), and programming in Python is expected.
Prior experience with acoustic or ultrasonic imaging, inverse problems, or physics-informed machine learning will be considered a strong advantage.

Position location

Site

Saclay

Job location

France, Ile-de-France, Essonne (91)

Location

Gif-sur-Yvette

Requester

Position start date

01/04/2026


Autres offres

Ces offres pourraient vous intéresser

Stage - Bac+5 - Propriétés thermo. et de transport d’alliages Fe-Ni dans le régime WDM - H/F

Ajouter cette offre à ma sélection : Stage - Bac+5 - Propriétés thermo. et de transport d’alliages Fe-Ni dans le régime WDM - H/F (2025-37349-S1793)
  • Réf. : 2025-37349-S1793
  • Stage
  • Essonne (91)
  • Bruyères-le-Châtel

Calculs d'assemblages avec "modèles de fuites" en Monte-Carlo H/F

Ajouter cette offre à ma sélection : Calculs d'assemblages avec "modèles de fuites" en Monte-Carlo H/F (2025-37546)
  • Réf. : 2025-37546
  • Stage
  • Essonne (91)
  • Gif-sur-Yvette

Stage 6 MOIS - Cellule Li-ion pour la RMN H/F

Ajouter cette offre à ma sélection : Stage 6 MOIS - Cellule Li-ion pour la RMN H/F (2025-37178)
  • Réf. : 2025-37178
  • Stage
  • GRENOBLE
  • Mentions légales
  • Cookies
  • Paramétrer vos cookies
  • Accessibilité : partiellement conforme
  • Plan du site
Aller en haut